3.279 \(\int \frac{1}{\sqrt{c+d x^3} (4 c+d x^3)} \, dx\)

Optimal. Leaf size=64 \[ \frac{x \sqrt{\frac{d x^3}{c}+1} F_1\left (\frac{1}{3};1,\frac{1}{2};\frac{4}{3};-\frac{d x^3}{4 c},-\frac{d x^3}{c}\right )}{4 c \sqrt{c+d x^3}} \]

[Out]

(x*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 1, 1/2, 4/3, -(d*x^3)/(4*c), -((d*x^3)/c)])/(4*c*Sqrt[c + d*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0284523, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {430, 429} \[ \frac{x \sqrt{\frac{d x^3}{c}+1} F_1\left (\frac{1}{3};1,\frac{1}{2};\frac{4}{3};-\frac{d x^3}{4 c},-\frac{d x^3}{c}\right )}{4 c \sqrt{c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

(x*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 1, 1/2, 4/3, -(d*x^3)/(4*c), -((d*x^3)/c)])/(4*c*Sqrt[c + d*x^3])

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{c+d x^3} \left (4 c+d x^3\right )} \, dx &=\frac{\sqrt{1+\frac{d x^3}{c}} \int \frac{1}{\left (4 c+d x^3\right ) \sqrt{1+\frac{d x^3}{c}}} \, dx}{\sqrt{c+d x^3}}\\ &=\frac{x \sqrt{1+\frac{d x^3}{c}} F_1\left (\frac{1}{3};1,\frac{1}{2};\frac{4}{3};-\frac{d x^3}{4 c},-\frac{d x^3}{c}\right )}{4 c \sqrt{c+d x^3}}\\ \end{align*}

Mathematica [B]  time = 0.0466243, size = 165, normalized size = 2.58 \[ \frac{16 c x F_1\left (\frac{1}{3};\frac{1}{2},1;\frac{4}{3};-\frac{d x^3}{c},-\frac{d x^3}{4 c}\right )}{\sqrt{c+d x^3} \left (4 c+d x^3\right ) \left (16 c F_1\left (\frac{1}{3};\frac{1}{2},1;\frac{4}{3};-\frac{d x^3}{c},-\frac{d x^3}{4 c}\right )-3 d x^3 \left (F_1\left (\frac{4}{3};\frac{1}{2},2;\frac{7}{3};-\frac{d x^3}{c},-\frac{d x^3}{4 c}\right )+2 F_1\left (\frac{4}{3};\frac{3}{2},1;\frac{7}{3};-\frac{d x^3}{c},-\frac{d x^3}{4 c}\right )\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

(16*c*x*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -(d*x^3)/(4*c)])/(Sqrt[c + d*x^3]*(4*c + d*x^3)*(16*c*AppellF
1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -(d*x^3)/(4*c)] - 3*d*x^3*(AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -(d*x^3)
/(4*c)] + 2*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -(d*x^3)/(4*c)])))

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 416, normalized size = 6.5 \begin{align*}{\frac{-{\frac{i}{9}}\sqrt{2}}{{d}^{3}c}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d+4\,c \right ) }{\frac{1}{{{\it \_alpha}}^{2}}\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{1}{6\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*x^3+4*c)/(d*x^3+c)^(1/2),x)

[Out]

-1/9*I/d^3/c*2^(1/2)*sum(1/_alpha^2*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)
))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I
*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)
*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1
/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/6/d*(2
*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c
*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf
(_Z^3*d+4*c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (d x^{3} + 4 \, c\right )} \sqrt{d x^{3} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((d*x^3 + 4*c)*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d x^{3} + c}}{d^{2} x^{6} + 5 \, c d x^{3} + 4 \, c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*x^3 + c)/(d^2*x^6 + 5*c*d*x^3 + 4*c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c + d x^{3}} \left (4 c + d x^{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x**3+4*c)/(d*x**3+c)**(1/2),x)

[Out]

Integral(1/(sqrt(c + d*x**3)*(4*c + d*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (d x^{3} + 4 \, c\right )} \sqrt{d x^{3} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((d*x^3 + 4*c)*sqrt(d*x^3 + c)), x)